U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 22 results

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Cefditoren pivoxil is a semi-synthetic cephalosporin antibiotic for oral administration. It is a 3rd generation cephalosporin that is FDA approved for the treatment of acute bacterial exacerbation of chronic bronchitis, community acquired pneumonia, infection of skin and/or subcutaneous tissue, and pharyngitis/tonsillitis. Cefditoren is a cephalosporin with antibacterial activity against gram-positive and gram-negative pathogens. The bactericidal activity of cefditoren results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Common adverse reactions include diarrhea, nausea and candida vaginitis. Co-administration of a single dose of an antacid which contained both magnesium (800 mg) and aluminum (900 mg) hydroxides or co-administration of a single dose of intravenously administered famotidine (20 mg) reduced the oral absorption of a single 400 mg dose of cefditoren pivoxil administered following a meal. Co-administration of probenecid with cefditoren pivoxil resulted in an increase in the plasma exposure of cefditoren.
Sulbactam is a β-lactamase inhibitor given in combination with β-lactam antibiotics to inhibit β-lactamase, an enzyme produced by bacteria that destroys the antibiotics. Sulbactam in combination with semisynthetic antibiotic ampicillin sodium is indicated for the treatment of infections due to susceptible strains of the designated microorganisms: Skin and Skin Structure Infections caused by beta-lactamase producing strains of Staphylococcus aureus, Escherichia coli etc; Intra-Abdominal Infections caused by beta-lactamase producing strains of Escherichia coli, Klebsiella spp. (including K. Pneumoniae) tec; Gynecological Infections caused by beta-lactamase producing strains of Escherichia coli, and Bacteroides spp. (including B. fragilis).
Status:
First approved in 1964
Source:
Virac by Ruson
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches. The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.
Status:
Investigational
Source:
INN:tacapenem
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

CS-834 is a beta-lactam antibiotic of a carbapenem class, developed by the Japanese company Sankyo Co. Ltd. CS-834 is an ester-type prodrug of the active metabolite R-95867. The drug showed potent and well balanced antibacterial activity as well as stability against dehydropeptidase-I. The in vivo efficacy of CS-834 was evaluated in murine systemic infections caused by 16 strains of gram-positive and -negative pathogens. The efficacy of CS-834 was in many cases superior to those of cefteram pivoxil, cefpodoxime proxetil, cefdinir, and cefditoren pivoxil, especially against infections caused by S. aureus, penicillin-resistant S. pneumoniae, E. coli, Citrobacter freundii, and Proteus vulgaris. Pharmacokinetics of CS-834 was evaluated in healthy male volunteers, but no further clinical development of the drug was reported.